Open Government Portal
Found 10 records similar to Trend of Total Precipitation for 1948-2012 based on Canadian gridded data
Gridded monthly, seasonal and annual anomalies derived from daily total precipitation is available at a 50km resolution across Canada. The Canadian gridded data (CANGRD) are interpolated from adjusted precipitation (i.e., AHCCD datasets). Adjusted precipitation data incorporate adjustments to the original station data to account for discontinuities from non-climatic factors, such as instrument changes or station relocation. The anomalies are the percentage difference between the value for a given year or season and a baseline value (defined as the average over 1961-1990 as the reference period).
Seasonal and annual trends of mean surface air temperature change (degrees Celsius) for 1948-2016 based on Canadian gridded data (CANGRD) are available at a 50km resolution across Canada. Temperature trends represent the departure from a mean reference period (1961-1990). CANGRD data are interpolated from adjusted and homogenized climate station data (i.e., AHCCD datasets). Homogenized climate data incorporate adjustments to the original station data to account for discontinuities from non-climatic factors, such as instrument changes or station relocation.
Gridded monthly, seasonal and annual mean temperature anomalies derived from daily minimum, maximum and mean surface air temperatures (degrees Celsius) is available at a 50km resolution across Canada. The Canadian gridded data (CANGRD) are interpolated from homogenized temperature (i.e., AHCCD datasets). Homogenized temperatures incorporate adjustments to the original station data to account for discontinuities from non-climatic factors, such as instrument changes or station relocation. The anomalies are the difference between the temperature for a given year or season and a baseline value (defined as the average over 1961-1990 as the reference period).
CANGRD is a set of Canadian gridded annual, seasonal, and monthly temperature and precipitation anomalies, which were interpolated from stations in the Adjusted and Homogenized Canadian Climate Data (AHCCD); it is used to produce the Climate Trends and Variations Bulletin (CTVB).
Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in total precipitation are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily precipitation (mm/day) from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded precipitation dataset of Canada (ANUSPLIN) was used as the downscaling target.
Statistically downscaled multi-model ensembles of total precipitation are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily precipitation (mm/day) from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded precipitation dataset of Canada (ANUSPLIN) was used as the downscaling target.
Seasonal and annual multi-model ensembles of projected relative change (also known as anomalies) in mean precipitation based on an ensemble of twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Projected relative change in mean precipitation is with respect to the reference period of 1986-2005 and expressed as a percentage (%). The 5th, 25th, 50th, 75th and 95th percentiles of the ensembles of mean precipitation change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in mean precipitation (%) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats.
Multi-model ensembles of mean precipitation based on projections from twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of mean precipitation (mm/day) are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100.
Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
Multi-model ensembles of mean temperature based on projections from twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of mean temperature (°C) are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100.
Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
Multi-model ensembles of sea ice concentration based on projections from twenty-eight Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of sea ice concentration as represented as the percentage (%) of grid cell area, are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100.
Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.