Open Government Portal

Found 10 records similar to Projected Sea Ice Thickness change based on CMIP5 multi-model ensembles

Federal

Multi-model ensembles of sea ice thickness based on projections from twenty-six Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of sea ice thickness (m) are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100.

Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

Last Updated: Oct. 2, 2018
Date Published: Sep. 6, 2018
Organization: Environment and Climate Change Canada
Formats: WMS PDF HTML NetCDF GeoTIF
Keywords:  Projections; climate; climate change; percentiles; ensembles; climate model; sea ice; cmip5, Weather and Climate, Provide Climate Information Products and Services, Expand Scientific Knowledge for Climate Monitoring and Prediction, National (CA), Climate, Climate change
Federal

Seasonal and annual multi-model ensembles of projected change (also known as anomalies) in sea ice concentration based on an ensemble of twenty-eight Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Sea ice concentration is represented as the percentage (%) of grid cell area. Therefore, projected change in sea ice concentration is with respect to the reference period of 1986-2005 and expressed as a percentage (%). The 5th, 25th, 50th, 75th and 95th percentiles of the ensembles of sea ice concentration change are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100.

Last Updated: Oct. 2, 2018
Date Published: Sep. 6, 2018
Organization: Environment and Climate Change Canada
Formats: WMS PDF HTML NetCDF GeoTIF
Keywords:  Projections; climate; climate change; percentiles; ensembles; climate model; sea ice; cmip5; anomaly, Weather and Climate, Provide Climate Information Products and Services, Expand Scientific Knowledge for Climate Monitoring and Prediction, National (CA), Climate, Climate change
Federal

Multi-model ensembles of sea ice concentration based on projections from twenty-eight Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of sea ice concentration as represented as the percentage (%) of grid cell area, are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100.

Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

Last Updated: Oct. 2, 2018
Date Published: Sep. 6, 2018
Organization: Environment and Climate Change Canada
Formats: WMS PDF HTML NetCDF GeoTIF
Keywords:  Projections; climate; climate change; percentiles; ensembles; climate model; sea ice; cmip5, Weather and Climate, Provide Climate Information Products and Services, Expand Scientific Knowledge for Climate Monitoring and Prediction, International, Climate, Climate change
Federal

Seasonal and annual multi-model ensembles of projected change (also known as anomalies) in mean temperature (°C) based on an ensemble of twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Projected change in mean temperature (°C) is with respect to the reference period of 1986-2005. The 5th, 25th, 50th, 75th and 95th percentiles of the ensembles of projected change in mean temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in mean temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats.

Last Updated: Oct. 2, 2018
Date Published: Sep. 6, 2018
Organization: Environment and Climate Change Canada
Formats: WMS PDF HTML NetCDF GeoTIF
Keywords:  Projections; climate; climate change; percentiles; ensembles; climate model; temperature; cmip5; anomaly, Weather and Climate, Provide Climate Information Products and Services, Expand Scientific Knowledge for Climate Monitoring and Prediction, National (CA), Climate, Climate change
Federal

Seasonal and annual multi-model ensembles of projected change (also known as anomalies) in surface wind speed based on an ensemble of twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Projected change in wind speed is with respect to the reference period of 1986-2005 and expressed as a percentage (%). The 5th, 25th, 50th, 75th and 95th percentiles of the ensemble of wind speed change are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in wind speed (%) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats.

Last Updated: Oct. 2, 2018
Date Published: Sep. 6, 2018
Organization: Environment and Climate Change Canada
Formats: WMS PDF HTML NetCDF GeoTIF
Keywords:  Projections; climate; climate change; percentiles; ensembles; climate model; wind; cmip5; anomaly, Weather and Climate, Provide Climate Information Products and Services, Expand Scientific Knowledge for Climate Monitoring and Prediction, National (CA), Climate, Climate change
Federal

Seasonal and annual multi-model ensembles of projected relative change (also known as anomalies) in mean precipitation based on an ensemble of twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Projected relative change in mean precipitation is with respect to the reference period of 1986-2005 and expressed as a percentage (%). The 5th, 25th, 50th, 75th and 95th percentiles of the ensembles of mean precipitation change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in mean precipitation (%) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats.

Last Updated: Oct. 2, 2018
Date Published: Sep. 6, 2018
Organization: Environment and Climate Change Canada
Formats: WMS PDF HTML NetCDF GeoTIF
Keywords:  Projections; climate; climate change; percentiles; ensembles; climate model; precipitation; cmip5; anomaly, Weather and Climate, Provide Climate Information Products and Services, Expand Scientific Knowledge for Climate Monitoring and Prediction, National (CA), Climate, Climate change
Federal

Seasonal and annual multi-model ensembles of projected change (also known as anomalies) in snow depth based on an ensemble of twenty-eight Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Projected change in snow depth is with respect to the reference period of 1986-2005 and expressed as a percentage (%). The 5th, 25th, 50th, 75th and 95th percentiles of the ensemble of snow depth change are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in snow depth (%) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats.

Last Updated: Sep. 25, 2020
Date Published: Sep. 6, 2018
Organization: Environment and Climate Change Canada
Formats: WMS PDF HTML NetCDF GeoTIF
Keywords:  Projections; climate; climate change; percentiles; ensembles; climate model; snow; cmip5; anomaly, Weather and Climate, Provide Climate Information Products and Services, Expand Scientific Knowledge for Climate Monitoring and Prediction, National (CA), Climate, Climate change
Federal

Multi-model ensembles of mean temperature based on projections from twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of mean temperature (°C) are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100.

Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

Last Updated: Oct. 2, 2018
Date Published: Sep. 6, 2018
Organization: Environment and Climate Change Canada
Formats: WMS PDF HTML NetCDF GeoTIF
Keywords:  Projections; climate; climate change; percentiles; ensembles; climate model; temperature; cmip5, Weather and Climate, Provide Climate Information Products and Services, Expand Scientific Knowledge for Climate Monitoring and Prediction, International, Climate, Climate change
Federal

Multi-model ensembles of snow depth based on projections from twenty-eight Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of snow depth (m) are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100.

Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

Last Updated: Oct. 2, 2018
Date Published: Sep. 6, 2018
Organization: Environment and Climate Change Canada
Formats: WMS PDF HTML NetCDF GeoTIF
Keywords:  Projections; climate; climate change; percentiles; ensembles; climate model; snow; cmip5, Weather and Climate, Provide Climate Information Products and Services, Expand Scientific Knowledge for Climate Monitoring and Prediction, National (CA), Climate, Climate change
Federal

Multi-model ensembles of mean precipitation based on projections from twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of mean precipitation (mm/day) are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100.

Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

Last Updated: Oct. 2, 2018
Date Published: Sep. 6, 2018
Organization: Environment and Climate Change Canada
Formats: WMS PDF HTML NetCDF GeoTIF
Keywords:  Projections; climate; climate change; percentiles; ensembles; climate model; precipitation; cmip5, Weather and Climate, Provide Climate Information Products and Services, Expand Scientific Knowledge for Climate Monitoring and Prediction, International, Climate, Climate change
Date modified: