Open Government Portal
Found 10 records similar to Chlorophyll-a concentration at the Atlantic Zone Monitoring Program (AZMP)-Quebec’s stations.
This record contains satellite-sensed chlorophyll-a concentration images of the Canadian Beaufort Sea at 1.1 km resolution. The dataset consists of 276 images, aggregated into two-week composites by calculating the mean value at each pixel, comprising years 1998 through 2020. The dataset spans two ocean colour sensors, MODIS-Aqua and SeaWiFS. The Arctic Ocean Empirical algorithm was used to calculate chlorophyll-a concentration, after images were corrected for atmospheric effects using the NIR-SWIR switching algorithm, and Remote Sensing Reflectance (Rrs) were produced.
Time series of dissolved inorganic nutrients (nitrate, silicate, phosphate) (mmol/m2) at the 3 fixed stations and 46 stations, grouped into transects, of the Atlantic Zonal Monitoring Program (AZMP) under the Quebec region responsibility. The mean integrated nutrient data of 2 strata (0-50 m) et (50-150 m) from the last ten years are displayed as 12 layers, 6 for the June survey (2011-2019, 2020 not sampled) and 6 for the autumn survey (2011-2020). Finally, 2 other layers shows the positions of the fixed stations of the program (Anticosti Gyre, Gaspé Current and Rimouski). Each station is linked with a .png file showing the time series of nutrients and with a .csv file containing all the integrated nutrient data acquired at those stations since the beginning of the program sampling (columns : Station, Latitude, Longitude, Date(UTC), Sounding(m), Depthmin/Profondeurmin(m), Depthmax/Profondeurmax(m), IntegratedNitrate/Nitrateintégré(mmol/m²), IntegratedPhosphate/Phosphateintégré(mmol/m²), IntegratedSilicate/Siliceintégrée(mmol/m²)).
Bottom salinity time series at the 3 fixed stations and 46 stations, grouped into transects, of the Atlantic Zonal Monitoring Program (AZMP) under the Quebec region responsibility. The mean bottom salinity of the last ten years are displayed as 2 layers, one for the June survey (2011-2019, 2020 not sampled), another for the autumn survey (2011-2020). A third layer shows the positions of the fixed stations of the program (Anticosti Gyre, Gaspé Current and Rimouski). Each station is linked with a .png file showing the bottom salinity time series and with a .csv file containing all the bottom salinity data acquired at those stations since the beginning of the program sampling (columns : Station,Latitude,Longitude,Date(UTC),Sounding(m),Depth/Profondeur(m),Salinity/Salinité).
Bottom temperature time series at the 3 fixed stations and 46 stations, grouped into transects, of the Atlantic Zonal Monitoring Program (AZMP) under the Quebec region responsibility. The mean bottom temperature of the last ten years are displayed as 2 layers, one for the June survey (2011-2019, 2020 not sampled), another for the autumn survey (2011-2020). A third layer shows the positions of the fixed stations of the program (Anticosti Gyre, Gaspé Current and Rimouski). Each station is linked with a .png file showing the bottom temperature time series and with a .csv file containing all the bottom temperature data acquired at those stations since the beginning of the program sampling (columns : Station,Latitude,Longitude,Date(UTC),Sounding(m),Depth/Profondeur(m),Temperature/Température(ºC)).
Bottom dissolved oxygen time series at the 3 fixed stations and 46 stations, grouped into transects, of the Atlantic Zonal Monitoring Program (AZMP) under the Quebec region responsibility. The mean bottom dissolved oxygen of the last ten years are displayed as 2 layers, one for the June survey (2011-2019, 2020 not sampled), another for the autumn survey (2011-2020). A third layer shows the positions of the fixed stations of the program (Anticosti Gyre, Gaspé Current and Rimouski). Each station is linked with a .png file showing the bottom dissolved oxygen time series and with a .csv file containing all the bottom dissolved oxygen data acquired at those stations since the beginning of the program sampling (columns : Station, Latitude,Longitude,Date(UTC),Sounding(m),Depth/Profondeur(m),DissolvedOxygen/OxygèneDissous(%sat)).
Phytoplankton counts (cell/L)) at the 3 fixed stations and some of the 46 stations grouped into Atlantic Zone Monitoring Program (AZMP) transects under Quebec region responsibility. Phytoplankton data counts at AZMP stations in June 2014, 2018 and 2019 are displayed as 5 layers: Diatoms, Dinoflagellates, Flagellates, Protozoans and Total Phytoplankton. Another layer displays the fixed stations Rimouski, Anticosti Gyre and Gaspe Current and the attached files contain the phytoplankton data acquired at those stations: a .png file for each one, showing time series of counts for the 5 groups, and a .csv file containing the data themselves (columns : Latitude,Longitude, Date(UTC), Depthmin/Profondeurmin(m), Depthmax/Profondeurmax(m), Diatoms/Diatomées(cells/L), Dinoflagellates/Dinoflagellés(cells/L), Flagellates/Flagellés(cells/L), Protozoans/Protozoaires(cells/L), Phytoplankton/Phytoplancton(cells/L)). Purpose
The Atlantic Zone Monitoring Program (AZMP) was implemented in 1998 with the aim of increasing the Department of Fisheries and Oceans Canada’s (DFO) capacity to detect, track and predict changes in the state and productivity of the marine environment.
Mean zooplankton biomass (g/m³) at the 46 stations grouped into Atlantic Zone Monitoring Program (AZMP) transects under Quebec region responsibility. Mean zooplankton wet weights of the last ten years are displayed as 4 layers in june (2011-2019, 2020 not sampled) and 4 layers in november (2011-2020). The 4 layers stand for total zooplankton, mesozooplankton, macrozooplankton and euphausiids. The attached files contain the biomass data: a .png file for each station, showing time series of biomass for the total zooplankton and the euphausiids, and a .csv file containing the data themselves (columns : Station,Date(UTC), Latitude, Longitude, Sounding(m), Depthmax/Profondeurmax(m), Depthmin/Profondeurmin(m), Mesozooplankton/Mésozooplancton(g/m³), Macrozooplankton/Macrozooplancton(g/m³), Zooplankton/Zooplancton(g/m³), Euphausiids/Euphausides(g/m³)).
MODIS-Aqua Chlorophyll-a (Chl-a) was acquired from the NASA Ocean Biology Processing Group at processing Level-3 (version 2018), 4-km resolution, where Chl-a concentration was calculated using the OC3/OCI method. The months of January and December were excluded from this dataset, as data in the winter months at higher latitudes are missing due to low sun angle preventing acquisition. The monthly geometric mean value at all pixels was calculated for individual years, then the geometric mean and geometric standard deviation factor of chlorophyll-a were calculated by month from these images. These methods of calculating mean and standard deviation were used due to the log-normal distribution of chlorophyll-a.
MODIS-Aqua Chlorophyll-a (Chl-a) was acquired from the NASA Ocean Biology Processing Group at processing Level-2 (version 2018), 1-km resolution, where Chl-a concentration was calculated using the OC3/OCI method. The months of January and December were excluded from this dataset, as data in the winter months at higher latitudes are missing due to low sun angle preventing acquisition. The pixels were aligned on a regular grid using the SeaDAS program, after which the monthly geometric mean value at all pixels was calculated for individual years. Finally, the geometric mean and geometric standard deviation factor of chlorophyll-a were calculated by month from these images.
MODIS-Aqua Chlorophyll-a (Chl-a) was acquired from the NASA Ocean Biology Processing Group where Chl-a concentration was calculated using the OC3/OCI method. The months of January and December were excluded from these datasets, as data in the winter months at higher latitudes are missing due to low sun angle preventing acquisition. The monthly geometric mean value at all pixels was calculated for individual years, then the geometric mean and geometric standard deviation factor of chlorophyll-a were calculated by month from these images. These methods of calculating mean and standard deviation were used due to the log-normal distribution of chlorophyll-a.