Grants and Contributions:

Title:
Nature inspired, environment friendly fibrous flexible electronics and photonics
Agreement Number:
RGPIN
Agreement Value:
$235,000.00
Agreement Date:
May 10, 2017 -
Organization:
Natural Sciences and Engineering Research Council of Canada
Location:
British Columbia, CA
Reference Number:
GC-2017-Q1-02144
Agreement Type:
Grant
Report Type:
Grants and Contributions
Additional Information:

Grant or Award spanning more than one fiscal year. (2017-2018 to 2022-2023)

Recipient's Legal Name:
Servati, Peyman (The University of British Columbia)
Program:
Discovery Grants Program - Individual
Program Purpose:

This proposal focuses on design and engineering of novel fibrous materials and devices that are integrated in form of multifunctional stretchable textiles for empowering revolutionary applications in smart textiles, health monitoring and internet of things (IoT). Recent advances in nanomaterials and devices on thin flexible plastic films highlight significant opportunity for development of electronics in form of yarn and textile that provide breathability, ruggedness and biological compatibility. In fact, in natural systems, different fibrous structures ranging from muscle fibers, nerves, and veins merge to form a complex functional system. Such systems highlight significant opportunity for electronic fibers and textiles with superior flexibility, low cost roll-to-roll manufacturing, improved biocompatibility and possibility for multifunctional designs. The market for electronic textile is expected to reach $70B by 2022 [1] with several sectors including health and wellness, sports, fashion, military and IoT.
In line with these opportunities, I have co-founded UBC Centre for Flexible Electronics and Textile (CFET), a member of Canada’s Smart Textile and Wearable Alliance, to drive innovation in this important area. The existing expertise in novel nanofiber and textile materials and devices and state-of-the-art prototyping infrastructure form the foundation of this proposal.
To mimic natural fibrous systems, we propose development of mechanically flexible yet rugged yarns that deliver functions such as light emission, sensing and energy storage. Different yarns can be knitted, woven or laminated for development of multifunctional textiles that are breathable and stretchable. This research program addresses scientific and technological challenges in material development, device engineering and fabrication of functional yarns for light emission, sensing and energy storage and design of novel integrated textile prototypes. We develop processes for formation of multi-layered organic light emitting diode layers on yarns for breathable and flexible display textiles that have potential for improved light extraction efficiency by virtue of the small diameter of the fibers. By functionalizing electrospun nanofibers and yarns with novel nanostructured films and quantum dots, we investigate development of highly sensitive multifunctional sensor arrays as a platform for development of malleable sensing textiles. Here, environment-friendly natural materials such as lignin will be explored as a source material for fibers. By controlling the nanoporous structure of proposed lignin yarns, we explore novel electrodes for energy storage devices such as supercapacitors and batteries with improved capacity, cycle life and flexibility. Integration of textile prototypes with communication and data processing circuitry for novel applications will be demonstrated.