Grants and Contributions:

Title:
Cost-effective and Environmentally-friendly Manufacturing of Magnesium-based Hybrid Nanocomposite with High Engineering Performance for Next-Generation Automotive Applications
Agreement Number:
RGPIN
Agreement Value:
$140,000.00
Agreement Date:
May 10, 2017 -
Organization:
Natural Sciences and Engineering Research Council of Canada
Location:
Ontario, CA
Reference Number:
GC-2017-Q1-02318
Agreement Type:
Grant
Report Type:
Grants and Contributions
Additional Information:

Grant or Award spanning more than one fiscal year. (2017-2018 to 2022-2023)

Recipient's Legal Name:
Hu, Hongfa (University of Windsor)
Program:
Discovery Grants Program - Individual
Program Purpose:

Magnesium usage has significantly increased in vehicles for the past two decades due to its light weight in nature. From the viewpoint of engineering performance, magnesium alloys are not very competitive owing to their inferior mechanical and high-temperature and corrosion and wear properties in comparison with aluminum alloys and steels. Recent studies show that the addition of nanosize reinforcements enhances the mechanical properties without substantially affecting the plasticity of magnesium. However, applying the nanocomposites for real engineering applications, especially automotive components, is facing challenges and still in infancy because the high cost of nanoparticles and the complexity of experimental preparation processes make them less attractive to the highly competitive automotive industry than micro-size reinforcement and conventional approaches, i.e., stir casting and/or preform and squeeze casting. The overall objective of this research program is to develop cost-effective and environmentally-friendly manufacturing processes for fabrication of magnesium-based hybrid nanocomposite (MHNC) with high engineering performance in order for the automotive industry to make full use of their unique properties in next-generation structural and powertrain applications, which not only suffer high cyclic mechanical loading but also need to sustain harsh and corrosive environment during service. In the proposed program, two intertwined streams are planned. The first involves the fabrication of MHNCs by developing preform-squeeze casting technologies with appropriate selection of micron and nano-size reinforcements, and a comprehensive evaluation of processing-structure-property relationships. A second stream within this program of research will seek to exploit the advantages of the Plasma Electrolytic Oxidation (PEO) process and apply it to the magnesium-based hybrid composites for anti-corrosion and wear protection.
The outcome of the project will maintain Canada as a world leader in producing light weight magnesium-based engineering components since Canada is presently hosting the largest magnesium casting producer in the world, Meridian Lightweight Technologies in Ontario. The success in the development of new technologies for potential advanced components will lead to an increase in magnesium component shipment in Canada as well as an expansion of world-wide use of Canadian value-added magnesium products.