Grants and Contributions:

Title:
Operator-theoretic approach to problems of Analysis and Partial Differential Equations
Agreement Number:
RGPIN
Agreement Value:
$105,000.00
Agreement Date:
May 10, 2017 -
Organization:
Natural Sciences and Engineering Research Council of Canada
Location:
Quebec, CA
Reference Number:
GC-2017-Q1-02735
Agreement Type:
Grant
Report Type:
Grants and Contributions
Additional Information:

Grant or Award spanning more than one fiscal year. (2017-2018 to 2022-2023)

Recipient's Legal Name:
Kinzebulatov, Damir (Université Laval)
Program:
Discovery Grants Program - Individual
Program Purpose:

My proposal is devoted to a number of interrelated problems originating in Mathematical Physics, playing a central role in several areas of modern Analysis, whose solution would lead to a significant progress and leadership of Canadian mathematicians in these areas.
I. A Brownian motion perturbed by a singular vector field (drift) is the principal component of many models of Mathematical Physics. It is constructed as a solution of the corresponding stochastic differential equation (SDE). The search for the maximal admissible singularities of the drift, i.e. such that the corresponding SDE has a unique solution, attracted the interest of many mathematicians, but is still far from being complete. I intend to substantially advance this search, reaching critical-order singularities, by applying new operator-theoretic techniques that recently allowed me to combine, for the first time, critical point and critical hypersurface singularities of the drift (in a weaker variant of this problem, i.e. constructing an associated Feller process). Next, I intend to develop the instruments needed to study solutions of such SDEs, including (non-Gaussian) two-sided bounds on the fundamental solution of the corresponding Kolmogorov backward operator.
II. I continue to work towards solving the long-standing problem of absence of positive eigenvalues of Schroedinger operators on R^d, in dimension d=3 or higher, and related problem of unique continuation (UC) for eigenfunctions of Schroedinger operators. I intend to obtain new, close-to-optimal results on the problem of absence of positive eigenvalues by exploiting an operator-theoretic technique that uses the link to the UC (extending my earlier work with L. Shartser), and a technique that does not rely on the UC (a new approach).
The goal of Projects I and II is to bring modern operator-theoretic techniques to the areas of diffusion processes and unique continuation.
III. Recently, I (jointly with A. Brudnyi) established the basic results of complex function theory within certain Fréchet algebras of holomorphic functions on coverings of Stein manifolds by extending Cartan theorems A and B (Oka-Cartan theory) to coherent-type sheaves on the spectra of these algebras (model example: holomorphic almost periodic functions, arising in various problems of Analysis and Mathematical Physics, e.g. in Anderson localization). This work suggests that the Oka-Cartan theory, as an approach to complex function theory alternative to studying the d-bar equation, is valid beyond the classical setup of complex manifolds. I intend to extend the developed techniques to the algebras of holomorphic functions that have, in a sense, a similar local structure, but a different global structure, e.g. certain subalgebras of Hardy algebra on polydisk (obtaining a corona theorem for these algebras), aiming at determining the "natural domain" of Oka-Cartan theory.