Grants and Contributions:
Grant or Award spanning more than one fiscal year. (2017-2018 to 2022-2023)
I lead a multidisciplinary research program in the Department of Chemical Engineering and Applied Chemistry at the University of Toronto. The focus of my program is the molecular design, nano-engineering and integration of unique organic materials into sustainable energy devices. The target application has been organic solar cells. Organic solar cells are energy generation devices based on organic materials that facilitate the conversion of sunlight into electrical current through a process with zero carbon footprint. Moving forward we will continue to expand this investigative path in several ways.
A specific class of materials of interest are phthalocyanines and their analogs. Phthalocyanines are known dyes and pigments that have continually emerged as functional organic electronic materials. We will continue to explore boron subphthalocyanines (BsubPcs) which are ring contracted analogs to phthalocyanines to exploit their properties which include: strong light absorption that enables the capture of ~39% of sunlight; high charge conductivity and multifunctionality; and the ability to facilitate the process of singlet fission, a process that enables the generation of two electrons/electrical charges per photon of light absorbed from the sun.
We have recently shown our BsubPc based organic solar cells are very stable in the outside ambient environment of downtown Toronto. We will continue to assess all new materials, on their own and paired with BsubPcs, in this environment to understand the relationship between molecular structure and environmental stability.
We have preliminary results that show an additional ring contracted phthalocyanine analogs known as tetrabenzocorrole (Tbc) also have similar desired properties and functionality within organic solar cells. This includes the ability to capture the remaining ~61% of sunlight, potentially yielding a ‘black’ solar cell through what we call ‘complimentary absorption engineering’ (CAE). We propose to expand the investigation of ring contracted analogs that can be paired with BsubPcs and enable the absorption of high energy blue and lower energy red/near infrared photons from the sun spectrum with the goal of producing a ‘black’ solar cell.
We will also investigate organic solar cell manufacturing techniques by combining the vacuum deposition method used for incorporating BsubPcs into organic solar cells and the solution printing of paired materials. This will enable us to consider an optimal device manufacturing method after identifying highly stable materials such as BsubPcs; in contrast to designing materials around targeting particular manufacturing methodologies.
We will also expand our program into infrared sensors and organic batteries. Organic batteries are sustainable energy storage devices with minimal carbon footprint and complete lack of flammability hazard associated with lithium ion batteries.