Grants and Contributions:

Title:
Enhancing the beneficial root microbiome in canola
Agreement Number:
CRDPJ
Agreement Value:
$347,652.00
Agreement Date:
Oct 18, 2017 -
Organization:
Natural Sciences and Engineering Research Council of Canada
Location:
Quebec, CA
Reference Number:
GC-2017-Q3-00368
Agreement Type:
Grant
Report Type:
Grants and Contributions
Additional Information:

Grant or Award spanning more than one fiscal year (2017-2018 to 2020-2021).

Recipient's Legal Name:
Hijri, Mohamed (Université de Montréal)
Program:
Collaborative Research and Development Grants - Project
Program Purpose:

The Prairie provinces host 81% of Canada's cropland. Canola is second in importance for Canadian agriculture after wheat. When land is used for agricultural production, soil fertility declines rapidly, since nutrients are extracted from the soil by crops and lost through soil leaching. Fertilizers are used to mitigate this nutrient loss, and to maintain or increase annual crop yields. However, the efficiency of fertilizer assimilation by crops is less than 60%. Improving fertilizer's use is critical to feed the world, and to provide food security while protecting the environment and ensuring sustainable use of non-renewable resources. Crop nutrient acquisition is largely controlled by the root and soil microbiomes, so managing microbes in cropland can improve nutrient use efficiency and crop yield. This project aims to assess the consistency and variability in the composition of the canola core root microbiome. We need to validate a lists of the reliable microbial taxa, i.e. the list of those taxa that are always present and abundant in canola core root microbiome. At the same time, we will also determine the crop rotation systems best favoring the establishment of a beneficial root microbiome in canola and in other rotation crops. Using two field experiments, we plan to reach these goals by addressing a series of four specific objectives, which are: (i) to describe the canola root microbiome as influenced by different rotation systems and time, on a Brown and a Black soil, (ii) assess the efficiency of N cycling in the canola rhizosphere by quantifying the expression of genes involved in the processes of biological N2-fixation, nitrification, and denitrification, (iii) identify the root microbiome taxonomic profiles and taxa related to efficient nitrogen use by canola crops, (iv) evaluate the potential of the root microbiome to increase the tolerance of canola to abiotic stress and pathogen pressure. This proposal will generate knowledge of the identity of canola root microbiome core members that will translate into the first step toward the sustainable intensification of canola production while increasing its yield and reducing the environment footprint.